亚洲综合图片区自拍_思思91精品国产综合在线观看_一区二区三区欧美_欧美黑人又粗又大_亚洲人成精品久久久久桥本

今熱點(diǎn):Linux內(nèi)核同步機(jī)制mutex詳解

2023-06-26 16:24:46 來源:嵌入式Linux開發(fā)

Linux內(nèi)核同步機(jī)制mutex

mutex鎖概述

在linux內(nèi)核中,互斥量mutex是一種保證CPU串行運(yùn)行的睡眠鎖機(jī)制。和spinlock類似,都是同一個時刻只有一個線程進(jìn)入臨界資源,不同的是,當(dāng)無法獲取鎖的時候,spinlock原地自旋,而mutex則是選擇掛起當(dāng)前線程,進(jìn)入阻塞狀態(tài)。所以,mutex無法在中斷上下文中使用。


(資料圖)

mutex鎖使用注意事項

mutex一次只能有一個進(jìn)程或線程持有該鎖mutex只有它的擁有者可以釋放該鎖不能多次釋放同一把鎖不可以重復(fù)獲取同一把鎖,否則會造成死鎖必須使用mutex提供的專用初始化函數(shù)初始化該鎖不能重復(fù)初始化同一把鎖不能使用memsetmemcpy等內(nèi)存處理函數(shù)初始化mutex鎖線程退出時要釋放自己持有的所有mutex鎖不能用于設(shè)備中斷或軟中斷上下文中

mutex鎖結(jié)構(gòu)體定義

owner:記錄mutex的持有者wait_lock:spinlock自旋鎖soq:MCS鎖隊列,用于支持mutex樂觀自旋機(jī)制wait_list:當(dāng)無法獲取鎖的時候掛起在此magic:用于debug調(diào)試dep_map:用于debug調(diào)試
struct mutex { atomic_long_t  owner; spinlock_t  wait_lock;#ifdef CONFIG_MUTEX_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* Spinner MCS lock */#endif struct list_headwait_list;#ifdef CONFIG_DEBUG_MUTEXES void   *magic;#endif#ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map;#endif};

mutex鎖主要接口函數(shù)

mutex_init初始化mutex對象
__mutex_initmutex_init會調(diào)用此函數(shù)
DEFINE_MUTEX靜態(tài)定義并初始化一個mutex對象
__MUTEX_INITIALIZERDEFINE_MUTEX會調(diào)用此函數(shù)
mutex_lock獲取mutex鎖,失敗進(jìn)程進(jìn)入D狀態(tài)
mutex_lock_interruptible獲取mutex鎖,失敗進(jìn)入S狀態(tài)
mutex_trylock嘗試獲取mutex鎖,失敗直接返回
mutex_unlock釋放mutex鎖
mutex_is_locked判斷當(dāng)前mutex鎖的狀態(tài)

獲取鎖流程分析

mutex_lock()函數(shù)調(diào)用might_sleep()函數(shù)判斷鎖的狀態(tài),調(diào)用__mutex_trylock_fast()函數(shù)嘗試快速獲取mutex鎖,如果失敗,則調(diào)用__mutex_lock_slowpath()函數(shù)獲取mutex

void __sched mutex_lock(struct mutex *lock){ might_sleep(); if (!__mutex_trylock_fast(lock))  __mutex_lock_slowpath(lock);}

如果沒有定義CONFIG_DEBUG_ATOMIC_SLEEP宏,might_sleep函數(shù)退化為 might_resched()函數(shù)。

# define might_sleep() \\ do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)# define sched_annotate_sleep() (current- >task_state_change = 0)#else  static inline void ___might_sleep(const char *file, int line,       int preempt_offset) { }  static inline void __might_sleep(const char *file, int line,       int preempt_offset) { }# define might_sleep() do { might_resched(); } while (0)# define sched_annotate_sleep() do { } while (0)

在配置了搶占式內(nèi)核或者非搶占式內(nèi)核的情況下,might_resched()函數(shù)最終都是空函數(shù)。如果配置了主動搶占式內(nèi)核CONFIG_PREEMPT_VOLUNTARY,則might_resched()函數(shù)會調(diào)用 _cond_resched()函數(shù)來主動觸發(fā)一次搶占。

#ifdef CONFIG_PREEMPT_VOLUNTARYextern int _cond_resched(void);# define might_resched() _cond_resched()#else# define might_resched() do { } while (0)#endif#ifndef CONFIG_PREEMPTextern int _cond_resched(void);#elsestatic inline int _cond_resched(void) { return 0; }#endif

——cond_resched()函數(shù)調(diào)用should_resched()函數(shù)判斷搶占計數(shù)器是否為0,如果搶占計數(shù)器為0并且設(shè)置了重新調(diào)度標(biāo)記則調(diào)用preempt_schedule_common()函數(shù)進(jìn)行搶占式調(diào)度

#ifndef CONFIG_PREEMPTint __sched _cond_resched(void){ if (should_resched(0)) {  preempt_schedule_common();  return 1; } return 0;}EXPORT_SYMBOL(_cond_resched);#endif

__mutex_trylock_fast()函數(shù)調(diào)用atomic_long_cmpxchg_acquire()函數(shù)判斷lock->owner的值是否等于0,如果等于0,則直接將當(dāng)前線程的task struct的指針賦值給lock->owner,表示該mutex鎖已經(jīng)被當(dāng)前線程持有。如果lock->owner的值不等于0,則表示該mutex鎖已經(jīng)被其他線程持有或者鎖正在傳遞給top waiter線程,當(dāng)前線程需要阻塞等待。上面描述的操作(比較和賦值)都是原子操作,不會有任何指令插入。

static __always_inline bool __mutex_trylock_fast(struct mutex *lock){ unsigned long curr = (unsigned long)current; if (!atomic_long_cmpxchg_acquire(&lock- >owner, 0UL, curr))  return true; return false;}

慢速獲取mutex鎖的路徑就是__mutex_lock_common()函數(shù),所謂慢速其實(shí)就是阻塞當(dāng)前線程,將current task掛入mutex的等待隊列的尾部。讓所有等待mutex的任務(wù)按照時間的先后順序排列起來,當(dāng)mutex被釋放的時候,會首先喚醒隊首的任務(wù),即最先等待的任務(wù)最先被喚醒。此外,在向空隊列插入第一個任務(wù)的時候,會給mutex flag設(shè)置上MUTEX_FLAG_WAITERS標(biāo)記,表示已經(jīng)有任務(wù)在等待這個mutex鎖了。

static noinline void __sched__mutex_lock_slowpath(struct mutex *lock){ __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);}static int __sched__mutex_lock(struct mutex *lock, long state, unsigned int subclass,      struct lockdep_map *nest_lock, unsigned long ip){ return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);}static __always_inline int __sched__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,      struct lockdep_map *nest_lock, unsigned long ip,      struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx){ struct mutex_waiter waiter; bool first = false; struct ww_mutex *ww; int ret; might_sleep(); ww = container_of(lock, struct ww_mutex, base); if (use_ww_ctx && ww_ctx) {  if (unlikely(ww_ctx == READ_ONCE(ww- >ctx)))   return -EALREADY; } preempt_disable(); mutex_acquire_nest(&lock- >dep_map, subclass, 0, nest_lock, ip); if (__mutex_trylock(lock) ||     mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {  /* got the lock, yay! */  lock_acquired(&lock- >dep_map, ip);  if (use_ww_ctx && ww_ctx)   ww_mutex_set_context_fastpath(ww, ww_ctx);  preempt_enable();  return 0; } spin_lock(&lock- >wait_lock); /*  * After waiting to acquire the wait_lock, try again.  */ if (__mutex_trylock(lock)) {  if (use_ww_ctx && ww_ctx)   __ww_mutex_wakeup_for_backoff(lock, ww_ctx);  goto skip_wait; } debug_mutex_lock_common(lock, &waiter); debug_mutex_add_waiter(lock, &waiter, current); lock_contended(&lock- >dep_map, ip); if (!use_ww_ctx) {  /* add waiting tasks to the end of the waitqueue (FIFO): */  list_add_tail(&waiter.list, &lock- >wait_list);#ifdef CONFIG_DEBUG_MUTEXES  waiter.ww_ctx = MUTEX_POISON_WW_CTX;#endif } else {  /* Add in stamp order, waking up waiters that must back off. */  ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);  if (ret)   goto err_early_backoff;  waiter.ww_ctx = ww_ctx; } waiter.task = current; if (__mutex_waiter_is_first(lock, &waiter))  __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); set_current_state(state); for (;;) {  /*   * Once we hold wait_lock, we"re serialized against   * mutex_unlock() handing the lock off to us, do a trylock   * before testing the error conditions to make sure we pick up   * the handoff.   */  if (__mutex_trylock(lock))   goto acquired;  /*   * Check for signals and wound conditions while holding   * wait_lock. This ensures the lock cancellation is ordered   * against mutex_unlock() and wake-ups do not go missing.   */  if (unlikely(signal_pending_state(state, current))) {   ret = -EINTR;   goto err;  }  if (use_ww_ctx && ww_ctx && ww_ctx- >acquired > 0) {   ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx);   if (ret)    goto err;  }  spin_unlock(&lock- >wait_lock);  schedule_preempt_disabled();  /*   * ww_mutex needs to always recheck its position since its waiter   * list is not FIFO ordered.   */  if ((use_ww_ctx && ww_ctx) || !first) {   first = __mutex_waiter_is_first(lock, &waiter);   if (first)    __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);  }  set_current_state(state);  /*   * Here we order against unlock; we must either see it change   * state back to RUNNING and fall through the next schedule(),   * or we must see its unlock and acquire.   */  if (__mutex_trylock(lock) ||      (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))   break;  spin_lock(&lock- >wait_lock); } spin_lock(&lock- >wait_lock);acquired: __set_current_state(TASK_RUNNING); mutex_remove_waiter(lock, &waiter, current); if (likely(list_empty(&lock- >wait_list)))  __mutex_clear_flag(lock, MUTEX_FLAGS); debug_mutex_free_waiter(&waiter);skip_wait: /* got the lock - cleanup and rejoice! */ lock_acquired(&lock- >dep_map, ip); if (use_ww_ctx && ww_ctx)  ww_mutex_set_context_slowpath(ww, ww_ctx); spin_unlock(&lock- >wait_lock); preempt_enable(); return 0;err: __set_current_state(TASK_RUNNING); mutex_remove_waiter(lock, &waiter, current);err_early_backoff: spin_unlock(&lock- >wait_lock); debug_mutex_free_waiter(&waiter); mutex_release(&lock- >dep_map, 1, ip); preempt_enable(); return ret;}

釋放鎖流程分析

釋放鎖的流程也分快速釋放和慢速釋放兩種路徑

void __sched mutex_unlock(struct mutex *lock){#ifndef CONFIG_DEBUG_LOCK_ALLOC if (__mutex_unlock_fast(lock))  return;#endif __mutex_unlock_slowpath(lock, _RET_IP_);}

如果一個線程獲取了mutex鎖之后,沒有其他的線程試圖獲取,此時的mutexowner成員就是該線程的task struct地址,并且所有的mutex flag都沒有被設(shè)置。這時候只需要將mutexowner成員清零即可,不需要其它操作,這就是快速釋放鎖的路徑。

static __always_inline bool __mutex_unlock_fast(struct mutex *lock){ unsigned long curr = (unsigned long)current; if (atomic_long_cmpxchg_release(&lock- >owner, curr, 0UL) == curr)  return true; return false;}

如果有其他線程在競爭該mutex鎖,這時候就會進(jìn)入慢速釋放鎖路徑,慢速釋放鎖路徑的邏輯分成兩段:一段是釋放mutex鎖,另外一段是喚醒top waiter線程。

static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip){ struct task_struct *next = NULL; DEFINE_WAKE_Q(wake_q); unsigned long owner; mutex_release(&lock- >dep_map, 1, ip); /*  * Release the lock before (potentially) taking the spinlock such that  * other contenders can get on with things ASAP.  *  * Except when HANDOFF, in that case we must not clear the owner field,  * but instead set it to the top waiter.  */ owner = atomic_long_read(&lock- >owner); for (;;) {  unsigned long old;#ifdef CONFIG_DEBUG_MUTEXES  DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);  DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);#endif  if (owner & MUTEX_FLAG_HANDOFF)   break;  old = atomic_long_cmpxchg_release(&lock- >owner, owner,        __owner_flags(owner));  if (old == owner) {   if (owner & MUTEX_FLAG_WAITERS)    break;   return;  }  owner = old; } spin_lock(&lock- >wait_lock); debug_mutex_unlock(lock); if (!list_empty(&lock- >wait_list)) {  /* get the first entry from the wait-list: */  struct mutex_waiter *waiter =   list_first_entry(&lock- >wait_list,      struct mutex_waiter, list);  next = waiter- >task;  debug_mutex_wake_waiter(lock, waiter);  wake_q_add(&wake_q, next); } if (owner & MUTEX_FLAG_HANDOFF)  __mutex_handoff(lock, next); spin_unlock(&lock- >wait_lock); wake_up_q(&wake_q);}

總結(jié)

本篇主要介紹了mutex互斥鎖的使用注意事項,介紹了mutex的主要函數(shù)接口以及獲取鎖的流程分析和釋放鎖的流程分析。通過本文的學(xué)習(xí),我們基本可以了解了mutex的實(shí)現(xiàn)機(jī)制和使用方法。

標(biāo)簽:

上一篇:Linux內(nèi)核同步機(jī)制spinlock詳解_今日熱訊
下一篇:最后一頁