RC緩沖電路
關(guān)鍵:主電路拓撲結(jié)構(gòu)。
如下電路所示:
(相關(guān)資料圖)
RC組成的正激變換器的緩沖電路
Q關(guān)斷,集電極電壓開始上升到2Vdc,電容C限制集電極電壓的上升速度,并減小上升電壓和下降電流的重疊,減低開關(guān)管Q的損耗。
下次開關(guān)關(guān)斷前,C必將已充滿的電壓2Vdc放完,放電路徑為C→Q→R。
如:開關(guān)管沒帶緩沖電路
正激變換器的復位繞組和初級繞組匝數(shù)相同。
當Q關(guān)斷瞬間,儲存在勵磁電感和漏感中的能量釋放,初級繞組兩端電壓極性反向,正激變換器的開關(guān)管集電極電壓迅速上升到2Vdc。
同時,勵磁電流經(jīng)二極管D流向復位繞組,最后減小到零,此時Q兩端電壓下降到Vdc。
如下電路所示
關(guān)管集電極電流和電壓波形。
開關(guān)管不帶緩沖電路,在Q關(guān)斷時,其兩端的漏感電壓尖峰很大,產(chǎn)生的關(guān)斷損耗也很大,嚴重時很可能會燒壞開關(guān)管,因此,必須給開關(guān)管加上緩沖電路。
當開關(guān)管帶緩沖電路,其集電極電壓和電流波形
如下電路所示
如上第一個電路圖
當Q開始關(guān)斷,其電流開始下降,而變壓器漏感會阻止這個電流的減小。
一部分電流將繼續(xù)通過將要關(guān)斷的開關(guān)管。
一部分則經(jīng)RC緩沖電路并對電容C充電,電阻R的大小與充電電流有關(guān)。
Ic的一部分流進電容C,可減緩集電極電壓的上升。
通過選取足夠大的C,可以減少集電極的上升電壓與下降電流的重疊部分,從而顯著降低開關(guān)管的關(guān)斷損耗,同時還可抑制集電極漏感尖峰電壓。
如上電路圖3中所示
A-C階段:為開關(guān)管關(guān)斷階段,C-D為開關(guān)管導通階段。
在開關(guān)管關(guān)斷前,電容C兩端電壓為零。
在關(guān)斷時刻(B時刻),C會減緩集電極電壓的上升速度,但同時也被充電到2Vdc
(在忽略該時刻的漏感尖峰電壓的情況下)。
電容C的大小不僅影響集電極電壓的上升速度,且決定電阻R上的能量損耗。
在Q關(guān)斷瞬間,C上的電壓為2Vdc,它儲存的能量為0.5C(2Vdc)2焦耳。
如果該能量全部消耗在R上,則每周期內(nèi)消耗在R上的能量為:
對限制集電極上升電壓來說,C應該越大越好;
但從系統(tǒng)效率出發(fā),C越大,損耗越大,效率越低。
因此,必須選擇合適的C,使其既能達到一定的減緩集電極上升電壓速度的作用,又不至于使系統(tǒng)損耗過大而使效率過低。
因在下一個關(guān)斷開始時刻即D時刻,必須保證C兩端沒有電壓,所以在B時刻到D時刻間的某時間段內(nèi),C必須放電。
實際上,電容C在C-D這段時間內(nèi),可通過電阻R經(jīng)Q和R構(gòu)成的放電回路進行放電。
因此,在選擇了一個足夠大的C后,R應使C在最小導通時間ton內(nèi)放電至所充電荷的5%以下,這樣則有:
第一個公式表明:R上的能量損耗是和C成正比的,因而必須選擇合適的C,這樣,如何選擇C就成了設(shè)計RC緩沖電路的關(guān)鍵。
事實上,當Q開始關(guān)斷時,假設(shè)最初的峰值電流Ip的一半流過C。
另一半仍然流過逐漸關(guān)斷的Q集電極,同時假設(shè)變壓器中的漏感保持總電流仍然為Ip。
那么,通過選擇合適的電容C,以使開關(guān)管集電極電壓在時間tf內(nèi)上升到2Vdc(其中tf為集電極電流從初始值下降到零的時間,可以從開關(guān)管數(shù)據(jù)手冊上查詢),則有:
從上面公式即可計算出電容C。
最小導通時間已知,即可得到電阻R的大小。
帶RC緩沖的正激變換器主電路
如下電路所示
一個帶有RC緩沖電路的正激變換器主電路。該主電路參數(shù)為:Np=Nr=43匝。Ns=32匝,開關(guān)頻率f=70 kHz,輸入電壓范圍為直流48~96 V,輸出為直流12 V和直流0.5 A。
開關(guān)電源之MOSFET管的關(guān)斷緩沖電路
開關(guān)管Q為MOSFET,型號為IRF830,其tf一般為30 ns。Dl、D2、D3為快恢復二極管,其tf很小(通常tf=30 ns)。
輸出功率P0=V0I0=6 W
假設(shè)變換器的效率為80%,每一路RC緩沖電路所損耗的功率占輸出功率的1%,這里取Vdc=48 V。
實驗結(jié)果分析
下面分兩種情況對該設(shè)計進行實驗分析,一是初級繞組有緩沖,次級無緩沖;二是初級無緩沖,次級有緩沖。
(1)初級繞組有緩沖,次級無緩沖
該實驗測量的是開關(guān)管Q兩端的漏源電壓,實驗分以下兩種情況:
第一種情況:RS1=1.5 kΩ,CS1不定,輸入直流電壓Vdc為48 V。
結(jié)果:在RS1不變的情況下,CSl越大,雖然開關(guān)管Q的漏感尖峰電壓無明顯降低,但它的漏源電壓變得平緩了,這說明在初級開關(guān)管的RC緩沖電路中,CSl應該選擇比較小的值。
第二種情況:CSl=33 pF,RS1不定,輸入直流電壓Vdc為48 V。
結(jié)果:當CS1不變時,RS1越大,開關(guān)管Q的漏感尖峰電壓越大(增幅比較小)。
可見,RC緩沖電路中,參數(shù)R的大小對降低漏感尖峰有很大的影響。在選定一個合適的C,同時滿足式(2)時,R應該選擇比較小的值。
次級繞組有緩沖,初級無緩沖
以D2、D3的陰極作為公共端來測量快恢復二極管的端壓,其結(jié)果是,當R不變時,C越大,二極管兩端的漏感尖峰越小。
理論上:如果C為無窮大時,二極管兩端的電壓中就沒有漏感尖峰。而在實際中,只需讓二極管兩端電壓的漏感尖峰電壓在其端壓峰值的30%以內(nèi)就可以滿足要求了,這樣同時成本也不會太高。
設(shè)計參數(shù)的確定
通過實驗分析可見,在次級快恢復二極管的RC緩沖電路中,當選擇了適當大小的電容C時,在滿足式(2)的情況下,電阻R應該選擇得越小越好。最終經(jīng)過實際調(diào)試,本設(shè)計選擇的RC緩沖電路參數(shù)為:
初級:RS1=200,CSl=100 pF
次級:RS2=RS3=5l,CS2=CS3=1000 pF
此設(shè)計初級開關(guān)管的RC緩沖電路中的C值雖然選得稍微比計算值大一些,但損耗也不是很大,因此還是可以接受的。
相對初級而言,次級快恢復二極管的RC緩沖電路中的C值就選得比計算值大得多,系統(tǒng)的損耗必然增大。
但是,并聯(lián)在快恢復二極管兩端的RC緩沖電路主要是為了改善系統(tǒng)輸出性能,因此選擇比較大的C值雖然會使系統(tǒng)的整體效率降低,但二極管兩端的漏感尖峰就減小了很多,而且輸出電壓的紋波也可以達到指定要求。
審核編輯:湯梓紅
標簽: